26

40 40

,0

52

N65-27719	
(ACCESSION NUMBER)	(THRU)
φ	(CODE)
(PAGES)	26
(NASA CR OR TMX OR AD NUMBER)	ICATEGORY

NASA TT F-9436

PROBLEM OF THE TEMPERATURE DEPENDENCE OF THE BREAKDOWN VOLTAGE IN SILICON p-n JUNCTIONS

V.K.Adalinskiy

GPO PRICE \$_	
OTS PRICE(S) \$_	
Hard copy (HC)	1.10.
Microfiche (MF)	.50

Translation of "K voprosu o temperaturnoy zavisimosti probivnogo napryazheniya v kremniyevykh p-n-perekhodakh".

Radiotekhnika i Elektronika, Vol.10, pp.201-203, Jan.1965.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON JUNE 1965

PROBLEM OF THE TEMPERATURE DEPENDENCE OF THE BREAKDOWN VOLTAGE IN SILICON p-n JUNCTIONS

*/201

V.K.Aldinskiy

27719

Development of an approximate method for calculating the breakdown voltage for a fast-rise and a linear p-n junction in silicon. A graph showing the calculated and experimental curves expressing the temperature coefficient as a function of the magnitude of the breakdown voltage for the two p-n junctions is presented.

The McKay breakdown theory (Bibl.1) is known to lead to the following expression relating the coefficient of collision ionization α with the breakdown width We of the p-n junction:

$$\int_{0}^{\infty} \alpha[\tilde{\mathcal{S}}(z)] = 1. \tag{1}$$

The breakdown condition (1) allows the derivation of an expression for the breakdown voltage as a function of the parameters of the p-n transition, if the quantity α is assigned as a function of the field E.

A consideration of collision ionization on the basis of the kinetic /202 equation (Bibl.2) showed that, in the case of a strong field, the dependence of α on the field was given by a complex formula, which could be represented in the form:

$$\alpha = C\Phi((E/E_s)^{-1}h, \quad \exp(-E^0(E^0)), \quad (2)$$

where C is a constant for a given semiconductor; \$\Phi\$ is a function depending on

^{*} Numbers in the margin indicate pagination in the original foreign text.

the ratio of the field to some characteristic field E_i in which the mean energy of the carriers becomes of the order of the ionization energy ϵ_i .

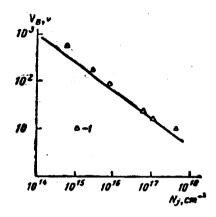


Fig.l Relation between Breakdown Voltage and Excess Impurity Concentration in the Base for a Sharp p-n Transition
Heavy line: experiment; l - Theory

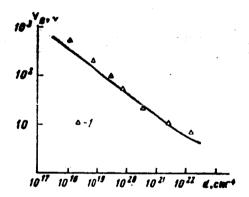


Fig.2 Relation between Breakdown Voltage and Concentration Gradient for a Linear p-n Transition Heavy line: experiment; 1 - Theory

In this report, we give an approximate calculation of the breakdown voltage for the sharp and linear p-n transitions in silicon. On the basis of experiments (Bibl.3, 4, 5) we selected the ionization energy ϵ_1 = 2 ev and the mean free path for scattering on phonons as ℓ = 10^{-6} cm.

Since α depends rigorously on E_i , we found that, for the theoretical and experimental values to coincide, the quantity E_i must be taken equal to 7×10^{-5}

 \times 10⁵ v·cm⁻¹. This is in satisfactory agreement with the theoretical estimate for E_i in another paper (Bibl.2). Since α is a rigorous function, condition (1)

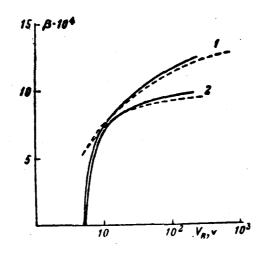


Fig.3 Relation between Relative Temperature Coefficient and the Breakdown Voltage

1 - For abrupt transition (solid curve: experiment; broken line: theory); 2 - For linear transition (solid curve: experiment; broken line: theory)

may be represented in the form

$$\int \alpha[E(x)]dx = m\alpha_{nB}(E_{nB})Ws.$$

where E_{MB} is the maximum field on breakdown, 0 < m < 1.

It can be shown that the condition (3) leads to a transcendental equation for V_8 and for a parameter determined by the structure of the transition. In rough approximation, the solution may be represented:

For an abrupt transition:

$$V_{B} \neq AN_{J}^{-1}$$
 (4)
 $A \simeq 6 \cdot 10^{11}, \quad \times \simeq 0.62,$

For a linear transition:

$$V_{p} = Bd^{-\gamma},$$

$$B \simeq 6.5 \cdot 10^{10}, \quad \gamma \simeq 0.44,$$
(5)

where N, is the excess impurity density in the base for a steep p-n transition;

d is the concentration gradient for a linear p-n transition.

The relations so obtained are in agreement with experiments (Figs.1, 2). Equations (4) and (5) yield an expression for the relative temperature coefficient of the breakdown voltage. In fact, since $E_1(T) \sim E_{10} \coth^{\frac{1}{2}}(h\omega_0/2kT)$ where ω_0 is the frequency of the optical phonon; h the Planck constant; k the Boltzmann constant; and T the temperature, we have on breakdown:

$$a \simeq \alpha_0(E_{HB}) \exp \left[-\frac{E_{10}^2 coth(\hbar\omega_0/2kT)}{E_{HB}^2}\right],$$

where α_0 depends weakly on the field.

Making use of eqs.(6) and (3), we obtain after differentiation:

$$\beta = dV_B / dTV_B =$$

for the steep transition,

$$\frac{E_{t0}^{2} \mu \hbar \omega_{0} V_{B}^{t_{t-soft}}}{sinh^{2} \frac{\hbar \omega_{0}}{2kT} 8\pi g kT^{2} A V_{B}} \left[1 + \frac{E_{t}^{2} \mu}{4\pi A V_{B}} V_{B}^{t2-soft} \right]$$

(7)

<u>/203</u>

or, for the linear transition,

$$= \frac{E_{10}^{2}(3\mu/\pi q)^{3/s} \hbar \omega_{0} 3V_{B}^{(2-4\gamma)/2\gamma}}{\sinh^{2}\frac{\hbar \omega_{0}}{2kT}kT^{2}4.5B^{3/s}\left[1 + \frac{16E_{1}^{2}}{9B^{3/s}}\left(\frac{3\mu}{\pi q}\right)^{7/s}V_{B}^{(2-4\gamma)/2\gamma}\right]},$$

where μ is the dielectric constant, and q is the charge of an electron. At $T \simeq 250 - 450^{\circ}$ K, eqs.(7) give a weak temperature dependence of β , which practically results in a linear variation of breakdown voltage with temperature. Figure 3 gives plots of the theoretical and experimental dependences for β .

I take this opportunity to thank B.M. Vul for his interest in this work and for a number of valuable comments.

BIBLIOGRAPHY

1. McKay, K.G.: Phys. Rev., Vol.94, p.877, 1954.

- 2. Keldysh, L.V.: Zhurn. eksp. i teor. fiz., Vol.37, p.713, 1959.
- 3. Moll, J.L. and Van Overstraten, R.: Solid State Electronics, Vol.6, p.147, 1963.
- 4. Chynoweth, K.G. and McKay, K.G.: Phys. Rev., Vol. 108, p.29, 1957.

 5. Aladinskiy, V.K.: Radiotekhn. i Elektronika, Vol.10, No.1, p.104, 1965.

Received 15 August 1963
Revised 21 May 1964